On expansions in orthogonal polynomials

نویسندگان

  • María José Cantero
  • Arieh Iserles
چکیده

A recently introduced fast algorithm for the computation of the first N terms in an expansion of an analytic function into ultraspherical polynomials consists of three steps: Firstly, each expansion coefficient is represented as a linear combination of derivatives; secondly, it is represented, using the Cauchy integral formula, as a contour integral of the function multiplied by a kernel; finally, the integrand is transformed to accelerate the convergence of the Taylor expansion of the kernel, allowing for rapid computation using Fast Fourier Transform. In the current paper we demonstrate that the first two steps remain valid in the general setting of orthogonal polynomials on the real line with finite support, orthogonal polynomials on the unit circle and Laurent orthogonal polynomials on the unit circle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials

Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$‎ ‎x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x)‎,$$ ‎we find the coefficients $b_{i,j}^{(p,q,ell‎ ,‎,r)}$ in the expansion‎ $$‎ ‎x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell‎ ‎}y^{r}f^{(p,q)}(x,y) =sumli...

متن کامل

Sub-exponentially Localized Kernels and Frames Induced by Orthogonal Expansions

The aim of this paper is to construct sup-exponentially localized kernels and frames in the context of classical orthogonal expansions, namely, expansions in Jacobi polynomials, spherical harmonics, orthogonal polynomials on the ball and simplex, and Hermite and Laguerre functions.

متن کامل

A Note on Summability of Multiple Laguerre Expansions

A simple structure of the multiple Laguerre polynomial expansions is used to study the Cesàro summability above the critical index for the convolution type Laguerre expansions. The multiple Laguerre polynomial expansion of an `1-radial function f0(|x|) is shown to be an `1-radial function that coincides with the Laguerre polynomial expansion of f0, which allows us to settle the problem of summa...

متن کامل

Quasi-orthogonal expansions for functions in BMO

For {φ_n(x)}, x ε [0,1] an orthonormalsystem of uniformly bounded functions, ||φ_n||_{∞}≤ M

متن کامل

The Impact of Stieltjes’ Work on Continued Fractions and Orthogonal Polynomials

Stieltjes’ work on continued fractions and the orthogonal polynomials related to continued fraction expansions is summarized and an attempt is made to describe the influence of Stieltjes’ ideas and work in research done after his death, with an emphasis on the theory of orthogonal polynomials.

متن کامل

Solving singular integral equations by using orthogonal polynomials

In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2013